
Neurocomputing 388 (2020) 280–287 

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

Detecting Alzheimer’s disease Based on 4D fMRI: An exploration 

under deep learning framework 

Wei Li, Xuefeng Lin, Xi Chen 

∗

School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Luoyu Road 1037, 430074 Wuhan, China 

a r t i c l e i n f o 

Article history: 

Received 3 May 2019 

Revised 8 December 2019 

Accepted 14 January 2020 

Available online 20 January 2020 

Communicated by Zhu Yu 

Keywords: 

Functional magnetic resonance imaging 

Alzheimer’s disease 

Convolutional neural network 

Long short-term memory network 

a b s t r a c t 

Applying machine learning methods to various modality medical images and clinical data for early diag- 

nosis of Alzheimer’s disease (AD) and its prodromal stage has many significant results. So far, the image 

data input to classifier mainly focus on 2D or 3D images. Although some functional imaging technolo- 

gies, such as functional magnetic resonance imaging (fMRI), generate 4D data which contain both spatial 

and time-varying information of the brain, for the lack of suitable 4D image processing algorithm, these 

4D data were always used by transforming them into functional connectivity or slicing them into 2D/3D 

pictures which causing apparent information loss. In this paper, we present a 4D deep learning model 

(C3d-LSTM) for AD discrimination, which is able to utilize the spatial and time-varying information si- 

multaneously by dealing with 4D fMRI data directly. The proposed C3d-LSTM combines a series of 3D 

convolutional neural networks (CNNs) to extract spatial features from each volume of 3D static image in 

fMRI image sequence. Then the feature maps obtained were put into the long short-term memory (LSTM) 

network to capture the time-varying information contained in the data. Because of the design of struc- 

ture, C3d-LSTM became an end-to-end data-driven model, which was more convenient for processing 

4D fMRI data. The model proposed conducted on the AD Neuroimaging Initiative dataset for algorithm 

evaluation compared with controlled experiments. Results showed that using 4D fMRI data directly with 

the proposed method did make a far better result for AD detection than the methods using functional 

connectivity, 2D, or 3D fMRI data. It demonstrated our assumption that making the most of the natu- 

ral spatial and temporal information preserved in 4D fMRI data is significant for AD detection and can 

increase the performance of the classifier. Meanwhile the result implied that the C3d-LSTM model pro- 

posed is a suitable model for processing 4D fMRI data and extracting the spatio-temporal property of 

fMRI data fully for diagnosis of AD. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

Alzheimer’s disease (AD) is a complex progressive neurodegen-

erative disease that often occurs in people over 65 years old [1] . It

affects human behavior, memory, and judgment. Because there is

no cure for AD so far, many research works focus on how to effec-

tively confirm the diagnosis of AD and start intervention as early

as possible, which is also clinically meaningful. 

Functional magnetic resonance imaging (fMRI) is an emerging

neuroimaging method that can characterize the structure and func-

tion of the nervous system. fMRI detects the brain’s metabolic ac-

tivities by measuring the changes in blood flow and blood oxygen

concentration. fMRI plays an important role in the study of AD [2] .
∗ Corresponding author. 
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In previous research, the fMRI data were usually used to con-

truct functional networks [3] . And then graph theory and ma-

hine learning methods would be used to analyze the functional

rain networks for figuring out the characteristics of AD [4] . For

xample, Wee et al. proposed a method combining structural and

unctional networks with several biomarkers to identify AD and

ild cognitive impairment (MCI) individuals [5] . Chen et al. made

rain networks which can extract both high-order and low-order

eatures for classification to avoid the possible information loss

n modeling [6] . As the brain network focuses on the descrip-

ion of the collaboration between regions of cerebral cortex, these

esearches encountered unavoidable information loss in modeling

hen processing 4D fMRI data into brain networks. 

With the rise of artificial intelligence technology, the deep

onvolutional networks have been widely used in the field of

omputer vision and medical image processing [7–9] . Then many

esearchers tried to apply this method to fMRI processing area.

https://doi.org/10.1016/j.neucom.2020.01.053
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.01.053&domain=pdf
mailto:liwei0828@hust.edu.cn
mailto:M201772527@hust.edu.cn
mailto:chenxi@hust.edu.cn
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or example, Sarraf et al. used 2D fMRI image slices to train a

NN for AD and healthy people’s classification [10] . Kam et al.

sed 3D fMRI image slices to train a PCA based 3D CNN [11] .

hese researches all tried to directly extract features using deep

onvolutional networks from 2D or 3D images sliced from original

D fMRI data. 

Until now, in the diagnosis of AD, most researchers used 4D

MRI data by transforming them into intrinsic functional connec-

ivity [12] or slicing them into 2D or 3D images and then input

he extracted data into the classifier or model. However, the for-

er way neglected considerable spatial structure information and

ime information through coarse-grained modeling, and the latter

ay inevitably lose a variety of information on the time dimension

f the 4D fMRI data. In fact, they didn’t make the most of the in-

ormation contained in the 4D fMRI data. We suppose that using

D fMRI directly can preserve full time–varying and spatial infor-

ation maybe significant for AD diagnosis. However, for the lim-

tation of algorithm, this assumption has not been demonstrated

efore. 

In this study, a deep learning model called as C3d-LSTM was

roposed to solve this problem. It is a combination of 3D CNN

nd LSTM. A series of 3D CNNs were used to extract spatial fea-

ures from each volume of 3D static image in fMRI image sequence.

hen the feature maps obtained were put into the long short-term

emory (LSTM) network to capture the time-varying information

ontained in the data. It takes the advantage of 3D CNN for extract-

ng spatial structure information and the advantage of LSTM for

rocessing time information from the data. It can process 4D fMRI

ata directly and utilize the time-varying information and struc-

ure information of fMRI fully and simultaneously for AD detection.

. Methods 

The C3d-LSTM model consists of two basic deep learning

odel structures, namely a 3D convolutional neural network (CNN)

13] and a long short-term memory (LSTM) [14] network. The 3D

NN is a generalization of traditional CNNs on 3D images. The

iggest change is the conversion of convolution kernels from 2D to

D, which makes the model more suitable for extracting features

rom 3D images. Therefore, the 3D CNN can be used to handle the

patial structure information contained in the fMRI data. The LSTM

etwork is an improved form of the traditional recurrent neural

etwork (RNN) that can solve the gradient vanish problem of long-

ependence in time series more effectively than RNNs [15] . It is

ften used in natural language processing and speech signal pro-

essing; through its internal complex gate structure, time-varying

nformation and correlation information in time series data can be

ell characterized. 

However, the 4D fMRI data are different from the common 2D

ime series data in data’s dimension, so it is not possible to di-

ectly use a LSTM network to process it. We decided to combine

he 3D CNN with the LSTM network and obtained the C3d-LSTM

eep learning model. The main advantage of the C3d-LSTM model

as that it could directly use 4D fMRI data as input, but did not

eed to convert the fMRI data into functional brain network data

r to slice them into 2D or 3D images. And we thought it may

educe the information loss of the fMRI data. The C3d-LSTM was

n end-to-end model, which means it was a more general method

nd easier to use. It didn’t need to rely on the prior information

y the specialist. 

An illustration of the C3d-LSTM model is shown in Fig. 1 . The

odel can be seen as a series 3D CNN module connected to a

STM network. The 3D CNN module was composed of repeated

onvolution layers and pooling layers, and it had a fully connected

ayer which also namely dense layer in the end. A more detailed

escription of 3D CNN module was introduced in the part 2.1. The
STM network was consist of a LSTM layer and a fully connected

ayer. And a more detailed description of LSTM networks was in-

roduced in the part 2.2. The 4D fMRI image, preprocessed by Sta-

istical Parametric Mapping (SPM) [16] , can be seen as a time se-

uence of 3D images. Then, the 3D CNN of the C3d-LSTM model

as used as a spatial feature extraction tool to obtain a feature

ap for each volume of 3D images. And the 3D CNN module was

ot shared across each volume of 3D images. The feature maps

orresponding to all volumes of 4D image sequence for an indi-

idual were put into the LSTM of the C3d-LSTM model to capture

he time-varying information contained in the data. The output of

he LSTM were put into a fully connected layer, and the category

abel of the individual was obtained. 

.1. Using 3D convolutional neural networks to extract the image 

eature of a single point image of functional magnetic resonance 

maging 

The basic structure of the 3D CNN could be divided into a 3D

onvolutional layer, a 3D batch normalization layer, an activation

unction layer, and a 3D pooling layer. Among them, a convolu-

ional kernel size was uniformly used (3, 3, 3) and the activation

unction used a rectified linear unit. The pooling layer had a step

ize of 1 and its kernel size was (2, 2, 2). The maximum pool-

ng method was used to down-sample the results derived from the

revious convolutional layer. Both the convolutional layer and the

ooling layer used valid padding. The structure of the 3D convo-

utional network is illustrated in Fig. 1 . The batch normalization

ethod [17] was used between the convolutional layers to speed

p the convergence of the model. At the end of the convolutional

ayers, flatten processing was applied to transform the 2D feature

ap into 1D data, and the dropout method [18] was used to ran-

omly deactivate the output of the flatten layer, which could en-

ance the robustness and generalization ability of the model. The

atten layer was followed by a fully connected layer. The fully con-

ected layer contained 256 neurons and used a linear activation

unction. The L2 regularization was added to the weight terms to

revent over-fitting of the model. The fully connected layer was

ollowed by the LSTM layer. In the end of the model, a fully con-

ected layer was used as the output layer. The number of neu-

ons in the fully connected layer was the same as the number of

abels of the fMRI data, which was the model that needed to be

lassified. For example, if the model were used to classify normal

ontrol (NC) and AD groups, then the number of neurons would

e two. In addition, the activation function of the fully connected

ayer used softmax, which could obtain the probability of each la-

el that the input data belonged to. 

.2. The structure of long short-term memory networks 

A LSTM is an improved form of the RNN. Because of the

ddition of the memory unit, it can effectively solve the long-

ependence that cannot be characterized because of the disappear-

nce of the gradient in the traditional RNN forward propagation

rocess. The LSTM has an internal structure called a gate, which

an be used to regulate the flow of information inside the cell.

hese gate structures can determine which data in the sequence

re important and need to be retained and which data need to be

hrown away. 

After deciding the retention of data in a single cell, the rele-

ant sequence information is passed along the network for predic-

ion. The gate structure contains a sigmoid function, the equation

f which is shown as (1) . Regardless of the input value, the output

alue of the sigmoid is between 0 and 1, which is fit to be used for

pdating or forgetting the information. Any number multiplied by

 will be 0, and this information will be deleted. Similarly, for any
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Fig. 1. The structure of the C3d-LSTM model. 
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number multiplied by 1, the result will be itself, so this informa-

tion is completely preserved. With the sigmoid function, the net-

work can control which information will be forgotten and which

information will be retained. 

f (x ) = 

1 

1 + e −x 
(1)

All types of RNNs, like the gated recurrent unit (GRU) and LSTM

network [19] , can be seen as a chained form of a repetitive neural

network module. Thus, when studying the LSTM network structure,

we only needed to discuss the cell module’s structure of the LSTM

network. The hidden layer cell module’s structure of the LSTM net-

work is shown in Fig. 2 . 

Candidate value : ˜ c <t> = tanh 

(
W c 

[
a <t−1 > , x <t> 

]
+ b c 

)
(2)

Update gate : �u = σ
(
W u 

[
a <t−1 > , x <t> 

]
+ b u 

)
(3)

Forget gate : � f = σ
(
W f 

[
a <t−1 > , x <t> 

]
+ b f 

)
(4)

Output gate : �o = σ
(
W o 

[
a <t−1 > , x <t> 

]
+ b o 

)
(5)

Cell State : c <t> = �u ∗ ˜ c <t> + � f ∗ c <t−1 > (6)

Output : a <t> = �o ∗ tanh ( c <t> ) (7)

The LSTM network consists of a number of cell modules. The in-

put of a current LSTM cell includes the value of the previous cell’s

output ( a <t−1 > and c <t−1 > ) and the input value of the current time

x < t > . The output of a current cell is a < t > and c < t > , which repre-

sents the output value of the current cell and the state value of the
urrent cell, respectively. The LSTM network contains three gates,

amely �u , �f , and �o , which represent the update gate, forget

ate, and output gate, respectively. The cell state ( c < t > ) is con-

rolled by the update gate and the output gate. The update gate

 �u ) controls the influence of the output value of the previous cell

nd the current input on the current cell state. 

Specifically, the update gate first passes the output value of the

revious cell ( a <t−1 > ), which contains the information of the hid-

en state of the previous cell and the input information of the

urrent cell ( x < t > ) to the sigmoid function. The update gate de-

ermines which information needs to be updated according to the

utput value of the sigmoid function. The sigmoid function’s out-

ut value is between 0 and 1, with 0 meaning unimportant and 1

eaning important. Second, the output value of the previous cell

 a <t−1 > ) and the input value of the current cell ( x < t > ) are also

assed into the tanh function to obtain a new candidate value vec-

or ( ̃ c <t> ). This new candidate value is multiplied by the previously

btained sigmoid output value. The sigmoid output value deter-

ines which information of the candidate values is important and

ill be preserved from the tanh function’s output. 

The forget gate ( �f ) controls the influence of the state value

f the previous cell ( c <t−1 > ) on the current cell state. Specifically,

he forget gate determines which information of the previous

ell’s state ( c <t−1 > ) is to be thrown away or preserved. The output

alue from the previous cell ( a <t−1 > ) and the input information

f the current unit ( x < t > ) are simultaneously passed into the

igmoid function. The output value of the sigmoid function is

etween 0 and 1. The closer the output value is to 0, the more

nformation should be forgotten. The closer the output value is

o 1, the more information should be retained. The output value

f the forgetting gate ( �f ) is multiplied by the state value of

he previous cell ( c <t−1 > ) and is then pointwise added to the
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Fig. 2. The structure of long short-term memory network 
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Table 1 

Demographic information and other sample characteris- 

tics. 

AD MCI NC 

Amount 116 99 174 

Age 74.6 ± 7.5 73.4 ± 16.0 75.5 ± 6.1 
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esult from multiplying the update gate output value ( �u ) by the

andidate value ( ̃ c <t> ). Finally, the cell state value of the current

ell ( c < t > ) is updated. This is a new cell state. 

The output gate ( �o ) controls the influence of the current cell

tate value on the final output value of the current cell ( a < t > ). The

alue of the output gate is obtained by simultaneously inputting

he output value of the previous cell ( a <t−1 > ) and the input value

f the current cell ( x < t > ) into the sigmoid function. The cell state

alue of the current cell ( c < t > ) is passed into the tanh function,

nd the output value of the tanh function is multiplied by the out-

ut value of the sigmoid function ( �o ). Finally, the output value of

he current unit a < t > is obtained. 

In the formula, W o , W u , and W f represent the weight value

earned by the corresponding control gate after training, respec-

ively, and b o , b u , and b f are the corresponding offset values, which

re also obtained by training the network. σ represents the sig-

oid function. tanh is the tanh function, and 

∗ represents the el-

ment multiplication. The LSTM network used in this study was

 multiple-input multiple-output structure (many-to-many) where

ach cell corresponded to one output ( a < t > ) and did not contain

 hidden layer. 

The output of the LSTM layer was input into a fully connected

ayer consisting of the same number of neurons as the number of

ategories. In the fully connected layer with softmax as the activa-

ion function, the label of the input data was determined according

o the output value of the fully connected layer. 

. Experiment results 

.1. Data processing 

In this study, a public dataset, namely the AD Neuroimaging Ini-

iative dataset (ADNI), was used to study and verify the method.

he acquisition was performed using a 3T Philips MRI scanner

anufactured by Philips Medical Systems. The specific scanning

arameters of the experimental data included a TR/TE of 30 0 0

s/30 ms, flip angle of 80 °, imaging matrix of 64 × 64, voxel size

f 3.31 mm × 3.31 mm × 3.31 mm, and 48 slices. The volume of

ach series was 140. The data were processed using the Data Pro-

essing Assistant for Resting-State fMRI (DPARSF) toolbox [20] and

he RESting-state fMRI data analysis Toolkit (REST) [21] . For sig-
al equilibration, each series’ first 10 volumes were removed. The

ost-processing included slice timing, head motion correction, nor-

alizing to an EPI template, a Gaussian kernel with 6 mm × 6

m × 6 mm full width at half maxima (FWHM) spatial smooth-

ng, and band-pass filtering within the interval of 0.01–0.08 Hz.

inally, nuisance signals, including six head motion parameters, a

lobal mean signal, white matter signal, and cerebrospinal fluid

ign, were regressed out. When processing the fMRI data, the data

ith a large head motion were excluded, and the linear trends of

ime courses were removed using REST. After all data processing

ork was completed, the dimensions of the data obtained were

61, 73, 61, and 130), where the fourth dimension was the time di-

ension. The data statistics information is shown in Table 1 . The

ample was divided into three parts, namely the AD group, the MCI

roup, which is the prodromal stage of AD, and the normal control

NC) group. The number of people in the AD group was 116, that

n MCI was 99, and that in NC was 174. For different controlled ex-

eriments, the same fMRI data which have been preprocessed will

e sliced into 2D pictures and 3D brain images. 

.2. Model parameters and training strategy 

All the deep learning models used in this study were built us-

ng the Keras [22] framework with TensorFlow [23] as the back-

nd. The models were trained by cross-validation and the data

ere divided into a training set, validation set, and test set ac-

ording to the proportions of 70 %, 10 %, and 20 %. In the train-

ng process, the techniques of early stopping [24] and weight de-

ay were used by monitoring the accuracy of the validation set,

nd the best performing models on the validation set were saved

s the final results. Using the cross-entropy loss [25] between the

redicted value and the true value (ground-truth) as the loss func-

ion, the Adam optimizer was used for parameter optimization. The
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Fig. 3. The receiver operating characteristic curves of each model’s Alzheimer’s dis- 

ease and normal control classification results. 

Fig. 4. The receiver operating characteristic curves of each model’s Alzheimer’s dis- 

ease and mild cognitive impairment classification results. 
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best learning rate used for training C3d-LSTM model was 0.0 0 0 01.

The Adam optimizer parameters for training C3d-LSTM model were

β1 = 0.9, β2 = 0.999, and ε = 1e-08. 

Limited by graphics memory, the maximum batch size for train-

ing C3d-LSTM model could only be four. The drop rate for train-

ing C3d-LSTM model was 0.2, that is, 20 % of the input value was

randomly deactivated each time. The dropout of the LSTM layer

was 0.5, and the l2 regularization coefficient value of the fully con-

nected layer was 0.0 0 01. 

3.3. Method comparison and analysis 

Most of recent studies have revealed that under the same con-

ditions, the deep learning methods always have got results far

better than those traditional hand-craft designed features meth-

ods [26] in computer-aided diagnosis of AD. In order to evalu-

ate the experiment results from different data usage methods, we

constructed several controlled experiments for comparison. First,

we used the most popular 2D deep learning models, respectively

based on VGG19 [27] , Resnet [28] and DenseNet [29] , to conduct

controlled 2D fMRI experiments. Second, a 3D CNN model which

has a same structure as the CNN in our proposed C3d-LSTM model

was also applied to this study. In addition, a functional brain net-

work modeling method using RBF kernel SVM as classifier was

conducted to show a baseline accuracy. 

For the controlled functional brain network experiment, there

are two steps. First, warping the automated anatomical labeling

(AAL) atlas for the fMRI data to get the time series of 90 ROIs (re-

gion of interests) of each sample. Then, calculating pairwise Pear-

son correlation coefficients between any two time-series of 90 ROIs

of one scan. The functional brain networks data are used as the in-

put of the SVM classifier. 

For controlled 2D fMRI experiments, the VGG19, Resnet and

DenseNet models adopt a transfer learning approach that uses

model weights trained by ImageNet [30] images for initialization.

Because it is a 2D neural network, the data used are a 2D slice

of the fMRI data after preprocessing. These slices are taken from

the origin plane of the axial (or transverse) plane of the 3D brain

image corresponding to each time node according to the time di-

mension. 

For controlled 3D fMRI experiments, the 3D data are sliced from

the original fMRI data after preprocessing; that is, the 4D fMRI data

are segmented from the time dimension, and the 3D data corre-

sponding to each time node are sequentially saved as the 3D ma-

trix data of the corresponding category. 

Our proposed C3d-LSTM network model uses the preprocessed

fMRI 4D data directly. In order to avoid the adverse effects of

data imbalance on the experiment results, for each experiment, the

number of the class with the smallest amount of data participating

in the experiment was taken as the standard, and the correspond-

ing amount of each remaining class data was randomly selected

from the class dataset for the experiment. 

The classification results of the control experiments were all

verified by a five-fold cross-validation, with the average of the five

experiment results as the final value. The evaluation metric was ac-

curacy (ACC), which is the number of correct classifications divided

by the total number of samples. The formulation for its calculation

is shown as (8) : 

Accuracy = 

T P + T N 

T P + T N + F P + F N 

× 100% (8)

In this study, AD, NC, and MCI were tested in one-versus-one,

two-class classification, and three-class classification experiments.

The classification accuracies are shown in Table 2 . 

As shown in Table 2 , all the deep learning models have an ob-

vious improvement in accuracy with comparison to the functional
rain network modeling method using SVM as classifier. And the

roposed C3d-LSTM model, which used 4D fMRI data, showed a

ignificant increase in accuracy over other deep learning models in

ll four classification tasks, including the discrimination of AD and

CI, MCI and NC, AD and NC, and AD, NC and MCI. 

Tables 3 and Figs. 3–5 compare the classification results of dif-

erent deep learning models using metrics of area under curve

AUC) [31 , 32] , and receiver operating characteristic (ROC) curves,

espectively. 

From the experiment results of Tables 2 and 3 and Figs. 3–5 ,

e can see that the proposed method which used 4D fMRI data

irectly did make a much better result for AD detection than the
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Table 2 

The classification experiment results of each model (accuracy (%) and standard deviation). 

Model AD/MCI MCI/NC AD/NC AD/NC/MCI 

Brain Networks Model [2] 73.94 ± 1.21 70.42 ± 1.42 79.97 ± 0.83 62.31 ± 1.24 

VGG19 [27] 83.88 ± 0.74 79.52 ± 0.86 94.99 ± 0.58 79.21 ± 0.72 

Resnet50 [28] 84.23 ± 0.84 76.75 ± 0.68 94.78 ± 0.60 78.70 ± 0.71 

Densenet121 [29] 82.32 ± 0.93 78.88 ± 0.82 95.12 ± 0.55 81.58 ± 0.76 

C3d 88.47 ± 0.78 81.17 ± 0.72 96.47 ± 0.68 82.46 ± 0.74 

C3d-LSTM 92.11 ± 0.54 88.12 ± 0.74 97.37 ± 0.56 89.47 ± 0.62 

Fig. 5. The receiver operating characteristic curves of each model’s normal control 

and mild cognitive impairment classification results. 

Table 3 

The classification experiment results of each model 

(area under curve). 

Model AD/MCI MCI/NC AD/NC 

VGG19 0.84 0.80 0.95 

Resnet50 0.85 0.78 0.95 

Densenet121 0.84 0.80 0.96 

C3d 0.89 0.82 0.98 

C3d-LSTM 0.92 0.89 1.00 
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Table 4 

The experiment results of using different numbers of long 

short-term memory hidden cells (accuracy (%)). 

Number AD/MCI AD/NC NC/MCI AD/NC/MCI 

64 86.84 94.74 84.21 82.46 

128 89.47 92.11 84.21 87.72 

256 92.11 97.37 88.12 89.47 

512 81.58 86.84 86.84 84.21 

Table 5 

The experiment results of using different numbers of long 

short-term memory layers (accuracy (%)). 

Layers AD/MCI AD/NC NC/MCI AD/NC/MCI 

1 92.11 97.37 88.12 89.47 

2 84.21 92.17 89.34 87.72 

3 86.84 86.84 86.64 85.96 
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ethods using 2D, 3D fMRI data or functional brain networks.

t demonstrated our assumption that the intact time–varying and

patial information preserved in 4D fMRI data are significant for

D detection. In addition, the C3d-LSTM model proposed in this

aper has also been proved to be an effective method to dispose

D fMRI data and extract the spatio-temporal property of fMRI

ata fully for diagnosis of AD 

Furthermore, to figure out the impacts of structure and param-

ters’ selections on the performance of the C3d-LSTM model, some

xperiments were conducted as below 

Considering the specificity of LSTM in the model, the structure

f the LSTM network was likely to have an important influence on

he performance of the model. Therefore, the influence of the num-

er of LSTM hidden cells and the number of LSTM layers on the

esults was also studied. As shown in Table 4 , a single-layer LSTM

etwork of 64, 128, 256, and 512 hidden cells was used for the

ontrolled experiments. From 64 to 128 to 256, the accuracy of the

wo-category and three-category classification experiment results
f the model generally increased with the increase in the number

f hidden cells. However, when the number of cells increased to

12, the accuracy of the two-category and three-category classifi-

ation experiment results decreased significantly. It is likely that

hen the number of hidden cells was less than 256, the model

as restricted by the number of cells; this was not enough to fully

haracterize the information contained in the fMRI data, and an

nder-fitting occurred. In addition, when the number of hidden

ells was increased to 512, over-fitting occurred because the pa-

ameters of the cells were too redundant. 

In addition to discussing the number of hidden cells in the

STM network, a controlled experiment on the effect of the num-

er of layers of the LSTM network on the results was also con-

ucted. Under the premise of keeping the other structures of the

odel unchanged, the single-layer, two-layer, and three-layer LSTM

etworks were used in the model, respectively. The models with

ifferent numbers of LSTM layers were tested in two-category and

hree-category classification experiments, and the results were also

easured using ACC. The experiment results are shown in Table 5 .

t can be seen that with the increase in the number of layers of

STM, the accuracy of both the two-category and three-category

xperiment results showed different degrees of decline. When the

umber of layers of LSTM was increased to three, the performance

f the model decreased significantly, and over-fitting was likely to

ccur. 

Furthermore, under the premise of keeping the number of hid-

en cells and other parameters unchanged, the LSTM was replaced

ith a GRU, which has a simpler structure, and a controlled ex-

eriment was performed. The GRU is another improvement to the

raditional RNN. Its structure is very similar to that of LSTM, but

ompared to LSTM, the GRU is simpler because it removes the cell

tate unit. The GRU only contains update and reset gates and uses

idden state values for information transfer. The GRU’s update gate

s similar to the LSTM’s output gate and forget gate. It can se-

ect which information in the cell is forgotten and which new in-

ormation needs to be retained. The GRU’s reset gate determines

hich previous information will be forgotten. Compared to LSTM,
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Table 6 

The experiment results of using a gated recurrent unit 

(GRU) and long short-term memory (LSTM) (accuracy (%)). 

AD/MCI AD/NC NC/MCI AD/NC/MCI 

GRU 85.53 94.74 86.84 81.58 

LSTM 92.11 97.37 88.12 89.47 
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the GRU’s structure is simpler and the tensor operation is less, so

it takes less time to train, which is also a large advantage. The ex-

periment results are shown in Table 6 . 

It can be seen from the tables and figures above that the C3d-

LSTM model was significantly better than the other 2D or 3D mod-

els in the classification tasks involving MCI types, regardless of

whether it was two-category or three-category classification. The

3D model was better than the 2D model in the classification task.

This could be attributed to the use of 3D data. The information

content was larger than that of the 2D data. More information

helped the model to distinguish the AD data of different stages.

Because the C3d-LSTM model introduced the neural network struc-

ture of LSTM, the input data of the model became 4D. In addition

to extracting the 3D image features, the model could also extract

the feature information of the input data time dimension, thereby

making full use of the information of fMRI data so that it could

obtain better classification results than those of other models. 

4. Conclusion 

In this study, we mainly have two contributions. First, so far,

the image data input to classifier for AD detection mainly focus

on 2D or 3D images. Although some functional imaging technolo-

gies, such as fMRI, generate 4D data which contain both spatial

and temporal information of the brain, these 4D data were always

used by transforming them into functional connectivity or slicing

them into 2D/3D pictures. We suppose that this operation appar-

ently causes information loss for classification. This work demon-

strated our assumption that making the most of the natural spatial

and temporal information preserved in 4D fMRI data is significant

for AD detection and also can increase the performance of classi-

fiers under the same condition. Second, this paper developed a 4D

deep learning model (C3d-LSTM) for AD discrimination, which is

able to utilize the spatial and time-varying information simultane-

ously by dealing with 4D fMRI data directly. The experiment result

showed that this algorithm is effective and make a far better re-

sult for AD detection than the methods using functional connec-

tivity, 2D, or 3D fMRI data under the same condition. It makes it

possible to make full use of all the information of various 4D data

in AD detection, not only limited to 4D fMRI. Some experiments

about the parameters’ selections of the C3d-LSTM also have been

done to show how we made a suitable model for the 4D fMRI data

processing. 
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